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Problem 1: A Party Trick (20 pts)

It is a well known party trick that by pulling the table-
cloth very quickly and suddenly, the plates on top of the
table can stay nearly in place.

(a) (2 pt) Start with a circular table D = 1 m in di-
ameter with a very flat and small (and dimension-
less for now) plate in the centre. How fast must
you pull the tablecloth so the plate remains on
the table? Assume the static friction coefficient
is µs = 0.5 and kinetic friction is µk = 0.3 (for any
contacts with the tablecloth) and that the table-
cloth accelerates instantaneously. The tablecloth
does not overhang the table.

(b) (4 pts) Mythbusters famously attempted to repli-
cate the same trick with a giant tablecloth and a
motorbike. We will simplify the experiment by
assuming that the table was only set with plates
placed d = 0.5 m apart from each other and from
both ends. Assuming a ` = 7 m long table, how
fast must the bike be travelling to successfully
carry out this experiment? The mass of the cloth
and plates are negligible compared to the mass of
the motorbike. Assume small plates and that the
tablecloth does not overhang the table.

(c) (6 pts) A young boy places his toy car in the cen-

tre on the table from part (b). He believes that
since it has wheels, it will stay on the table easier.
Confirm or deny this statement and find the sig-
nificant speeds that the tablecloth is pulled at that
would cause the car to stay on the table. Assume
the car (including wheels) has mass 2m, and that
each wheel is a uniform disk of mass m/4. The car
is small in comparison to the table.

(d) (8 pts) We run the experiment one last time with
the glass, with same mass as a plate, placed on top
of each plate on the tablecloth, which in turn, is on
a frictionless table. The static and kinetic coeffi-
cient between the glass and the plate are µ′s = 0.30
and µ′k = 0.15 respectively. How fast must the
tablecloth be pulled so that the glasses stay com-
pletely on the plate and the plates stay completely
on the table? Do not assume that the either plate
or glass is dimensionless this time. A diagram is
provided below:

Solution 1: TBD
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Problem 2: Solar Sails (26 pts)

Much research is being done on the possibility of using
solar sails to reach far away reaches in out galaxy. This
is a method of propulsion that use light from the sun
to exert a pressure on what is usually a large mirror.
The sails themselves are often made of a thin reflective
film. Compared to traditional spacecraft, while these
sails have very limited payloads, they offer long oper-
ational lifetimes and are relatively low cost. The most
significant advantage is speed: since solar sails do not de-
pend on onboard propellant, they can travel much faster
than a standard rocket, with the possibility of reaching
a significant percentage of the speed of light. For all
parts, assume the solar sails are only under the influence
of gravity from the sun only. In addition, you may define
necessary variables such as the mass and power output
of the sun.

(a) (2 pt) Assume the solar sails are not revolving
around the sun. Assume they are very reflective
thin discs and that all of the mass is in the sail.
What is the maximum area density so that the sail
does not fall towards the sun? Does the distance
matter (find the general density to distance equa-
tion if it does matter)?

(b) (3 pts) Assume the solar sails are a thin spherical
shell and made of a perfectly absorbent material
instead. The area density is exactly half the max-

imum area density so that it does not fall towards
the sun. What is its final speed if it starts at a
stationary position 1 Au from the sun?

(c) (5 pts) Assume the solar sails are a thin spheri-
cal shell and made of material having reflectance r.
With the same area density as in part (b), what is
the final speed (it can reach this speed either when
crashing into the sun, escaping the solar system,
or remain in orbit)? This time, assume it starts
in circular orbit 1 Au away from the sun as the
starting condition. What is the orbital shape?

(d) (6 pts) Simply not falling into the sun is insuf-
ficient for solar sails. Most are planned to reach
relativistic speeds. A way to achieve this is to fire
large Earthbound lasers at the sail. How power-
ful must the lasers be to accelerate the sail up to
v = 0.2c in 50 days? Since this far exceeds the
value obtained in part 3, neglect the effects of the
sun.

(e) (10 pts) Suppose a perfectly reflecting solar sail in
the shape of a thin disk (with mass m and radius
r) orbiting around the star in a circular orbit of ra-
dius d � r. It is also spinning around itself, such
that the spin angular velocity is in the same direc-
tion as the orbital angular velocity, and its axis of
symmetry always remains parallel to the plane of
the orbit. If its initial spin velocity is ω0 find its
spin velocity after it revolves an angle θ around the
star.

Solution 2:

(a) Let the sail have an area of A and area density σ and the sun have mass M . The gravitational force
acting on this sail is:

FG =
GM(Aσ)

R2

The photons emitted from the sun have a momentum of E
c . On the reflective sail, the change in

momentum is:
2E

c

The force imparted from this change is:

F =
dp

dt
=

2

c

dE

dt

Now taking the projection area of the disk which is A in this case, we can find the fraction of the sun’s
power (denoted by P ) reaching the sail:

PA

4πR2
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So the force from the photons emitted by the sun is

FP =
PA

2πcR2

Now force balancing and solving algebraically we get,

σ =
P

2πGMc

(b) The change in momentum for the photons is reduced by a factor of two because of the new perfectly
absorbing sails:

F =
1

c

dE

dt

If we let the spherical shell have a surface area of A, the projection area of the spherical shell is 1
4A.

Using the same analysis in part a we find that

σmax =
PA

16πcR2

and

FP =
PA

16πcR2

Now using 1
2σmax for our force balance equation we get,

(Aσ)r̈ = FP − FG

(Aσ)r̈ = − PA

32πcR2

We find that the acceleration is GM
R2 which means the magnitude of the gravitational potential field is

GM
R . Now using conservation of energy (the initial kinetic energy and the final potential energy are

zero):
1

2
mv2

f =
GMm

R

vf =

√
2GM

R

(c) The absorbance is 1− r, so the force contribution from absorbed photons is:

FP1 = (1− r) PA

4πcR2

where A is the area of projection of the sphere. For reflected photons, we only consider the change
of momentum in the same direction of the original travelling direction since any impulse in the per-
pendicular directions cancel due to spherical symmetry. Incoming photons that are reflected at an
incident angle θ have a change in momentum of

E

c
(1 + cos(2θ))

in the direction of travel. This is better illustrated in the following diagram:

It is important to note that at different angles there are varying frequencies of photons reflecting off
at that angle due to a varying area of projection. It is easy to show that the area of projection at an
angle θ is

2πr2 sin(θ) cos(θ)dθ = A sin(2θ)dθ.
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Taking the sum over all contributions from rings at all angles, we get the expression

FP2 = r
PA

4πcR2

∫ π/2

0

(1 + 2 cos(2θ))(sin(2θ))dθ

After evaluating, we get that

FP2 = r
PA

4πcR2

We can conclude that the force is independent of the reflectance value r because the force from
absorbance and reflectance contributions sum to PA

4πcR2 .

Now to solve for v, we can use conservation of energy (similar to part b, except this time we have an
initial kinetic energy as well) to get:

1

2
mv2

f =
GMm

R
+

1

2
mv2

o

v2
o =

GM

R

vf =

√
3GM

R

It is well known that the eccentricity of an orbit in an inverse square relationship with two masses is:

e =

√
1 +

2L2E

mrk2

With E being the total energy, L the angular momentum, mr the reduced mass, and k a constant.
Because the energy is positive, the eccentricity is greater than one. Therefore it is a hyperbolic orbit.
(Note: points for describing the orbit were given to teams that went through the complete derivation
of the eccentricity or at least provided some sort of mathematical analysis)

(d) We need to take into account both relativistic effects as well as the doppler effect. The force of radiation
is given by

Frad =
2P

c

√
1− β
1 + β

which gives rise to the net force

γ3mc
dβ

dt
=

2P

c

√
1− β
1 + β

.

Solving this differential equation gives us

P =
0.113mc2

t
.

(e) Assume that the intensity of the solar radiation at the solar sail is I. Let the solar sail have mass
m uniformly distributed across a disc of radius r, and be perfectly reflecting. Suppose it is rotating
with angular speed ω, about an axis on its plane (so by perpendicular axis theorem, it has moment of
inertia 1

4mr
2 about that axis). We break the solar sail into many tiny pieces of area dA and analyze

the momentum transferred to each piece by the solar radiation.

Suppose a piece of area dA has its normal oriented an angle θ from the oncoming radiation, and it is
moving a speed v directly along its normal. Consider what happens after a small time dt. Assume
that the total momentum of the photons it intercepts is dp. The total momentum imparted to the
area by those photons can be calculated by doppler shift, resulting in 2(cos θ + v

c )dp. Next, drawing

a picture will show that the total momentum of the photons it intercepts is (1 + v
c cos θ ) Ic cos θdAdt.
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Thus, we know 2(cos θ+ v
c )(1 + v

c cos θ ) Ic cos θdAdt gives the total momentum imparted to the piece of
area by the radiation.

Now, we integrate all those small pieces of area of find the total angular impulse in time dt. Let α
be the angular position of the small piece of area with respect to the axis of rotation of the solar sail.
Then we get

τ =

∫ π

0

2(cos θ +
ωr sinα

c
)(1 +

ωr sinα

c cos θ
)
I

c
cos θ ∗ 2(r cosα)2r sinαdα−

∫ π

0

2(cos θ − ωr sinα

c
)(1− ωr sinα

c cos θ
)
I

c
cos θ ∗ 2(r cosα)2r sinαdα

where τ is the angular impulse delivered per unit time. Note that the first integral represents the
side of the disc that moves toward the sun, while the second integral represents the side of the disc
that moves away from the sun. Also, notice we replaced v with ωr sinα in the first integral and v
with −ωr sinα in the second integral. We also included the total area of the small pieces that were
a distance r sinα from the axis of rotation, which is 2(r cosα)2dα, and the lever arm is r sinα. After
simplification, we get

τ = 16
I

c2
ωr4 cos θ

∫ π

0

cos2 α sin2 αdα

Finally, we get the average value of |τ | over θ is τ = 4
c2 Iωr

4 = − 1
4mr

2ω̇, since the torque is against

the direction of rotation. Solving the differential equation gives ω(t) = ω0e
− 16Ir2

mc2
t.
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Problem 3: Electron Escape (28 pts)

An infinite wire with current I has a radius a. The wire
is made out of a material with resistivity ρ and heat
conductivity κ. The temperature outside the wire is a
constant T0.

(a) (4 pts) After a long time, determine the temper-
ature T (r) at a distance r from the center of the
wire. Assume that the current in the wire is uni-
formly distributed.

(b) (4 pts) Now, the outer surface of the wire is main-
tained at a potential of −V , where V is positive.
The wire is surrounded by an infinite cylindrical
shell with radius b > a that is grounded. Some-
how, an electron is able to escape from the wire.

Assume that it is at rest just as it escapes. You
can neglect radiation from the electron.

Draw a qualitative graph of the physical path that
the electron takes, along with a diagram of the
wire.

(c) (6 pts) Find the maximum distance rmax of the
electron from the center of the wire in the subse-
quent motion as a function of V , and also in terms
of I, a, and b. Ignore all relativistic effects in this
part only.

(d) (12 pts) Redo the calculation in the previous part
with relativistic effects.

(e) (2 pts) Graph the maximum radius rmax accord-
ing to part (d) as a function of V .

Solution 3:

(a) As the current density is uniform, the current through a concentric circle with radius r will have total

current r2

a2 I. The resistance of the portion of the wire of length ` up to a radius r is given by

R =
ρ`

A
=

ρ`

πr2
.

Therefore, the power emitted out of a cylindrical shell with radius r and length ` is

P = I2R =
r4

a4
I2 ρ`

πr2
=
ρI2`r2

πa4
.

By Fourier’s Law,
ρI2`r2

πa4
= −κAdT

dr
= −κ(2πr`)

dT

dr
.

Therefore,
dT

dr
= − ρI2

2π2a4
r =⇒ T (r) = − ρI2

4π2a4
r2 + C.

Since T (a) = T0, so we see C = ρI2

4π2a4 · a
2 + T0. Thus,

T (r) = T0 +
ρI2

4π2a4
(a2 − r2) .

(b) The electric force is constantly outward, while the magnetic force is perpendicular to the motion in the
plane determined by the z axis and the radial direction. Note that the motion of the electron is always
in this plane. Therefore, the electron will move outward and continuously change direction until it
reaches a maximum radius. Then, it will move back towards the wire in a motion that is completely
symmetric. When it reaches the wire again, the motion will repeat in a somewhat “cycloidal” motion.
See the graph below.
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r

z

r = a

(c) Clearly, there is only movement in the radial and z directions. The magnetic field at a radius r is given
by µ0I

2πr , and it is tangential. From Newton’s second law in the z direction,

m
dvz
dt

= eṙ

(
µ0I

2πr

)
=⇒ vz =

µ0eI

2πm
ln
( r
a

)
.

By energy conservation, the energy of the electron at a distance r from the z-axis is given by

E =
eV

ln
(
b
a

) ln
( r
a

)
=

1

2
mv2

r +
1

2
mv2

z .

At the maximum radius, vr = 0, so we get

eV

ln
(
b
a

) ln
(rmax

a

)
=

1

2
mv2

z =
µ2

0e
2I2

8π2m

(
ln
rmax

a

)2

.

Solving for rmax,

ln
(rmax

a

)
=

8π2mV

µ2
0eI

2 ln
(
b
a

) =⇒ rmax = a exp

(
8π2mV

µ2
0eI

2 ln
(
b
a

)) .

Noe that when this expression is greater than b, the electron stops at a radius b.

(d) Clearly, there is only movement in the radial and z directions. From Newton’s second law in the z
direction,

dpz
dt

= eṙ

(
µ0I

2πr

)
=⇒ pz =

µ0eI

2π
ln
( r
a

)
.

Also, note by energy conservation that the energy of the electron at a distance r from the z-axis is

E = mc2 +
eV

ln
(
b
a

) ln
( r
a

)
.

Therefore,we have,

E2 = (mc2)2 + (pc)2 = (mc2)2 + (p2
r + p2

z)c
2 =

(
mc2 +

eV

ln
(
b
a

) ln
( r
a

))2

,
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p2
r + p2

z =
e2V 2 ln

(
r
a

)2
c2
(
ln
(
b
a

))2 +
2meV ln

(
r
a

)
ln
(
b
a

) ,

p2
r =

e2V 2 ln
(
r
a

)2
c2
(
ln
(
b
a

))2 +
2meV ln

(
r
a

)
ln
(
b
a

) − µ2
0e

2I2

4π2

(
ln
( r
a

))2

At the maximum radius, rmax, we have pr = 0. Therefore,

e2V 2 ln
(
rmax

a

)2
c2
(
ln
(
b
a

))2 +
2meV ln

(
rmax

a

)
ln
(
b
a

) − µ2
0e

2I2

4π2

(
ln
(rmax

a

))2

= 0.

We can solve for rmax to get

rmax = a exp

2meV

ln
(
b
a

) (µ2
0e

2I2

4π2
− e2V 2

c2
(
ln
(
b
a

))2
)−1

 .

However, we also have to note that rmax ≤ b. We will now find the condition on V such that the
electron’s maximum radius is b. The critical voltage Vcrit is when pr = 0 at r = b. We have

e2V 2
crit ln

(
b
a

)2
c2
(
ln
(
b
a

))2 +
2meVcrit ln

(
b
a

)
ln
(
b
a

) − µ2
0e

2I2

4π2

(
ln

(
b

a

))2

= 0,

e2V 2
crit + 2mc2eVcrit −

µ2
0e

2I2c2

4π2

(
ln

(
b

a

))2

= 0.

By the quadratic formula,

Vcrit =

√
4m2c4e2 +

µ2
0e

4I2c2

π2

(
ln b

a

)2 − 2mc2e

2e2
.

Therefore, we have

rmax =

a exp

(
2meV

ln( ba )

(
µ2
0e

2I2

4π2 − e2V 2

c2(ln( ba ))
2

)−1
)

0 ≤ V < Vcrit

b V ≥ Vcrit

.

(e) The graph is roughly exponential in V until rmax = b, at which point it is flat.

V

rmax

a

b

Vcrit
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Problem 4: Bullet in Cylinder (20 pts)

A hollow cylinder of mass M and radius R rests on a
rough horizontal surface. A projectile of mass m < M
having a velocity u directed horizontally exactly towards
the middle of the cylinder as shown in the figure. The
shell gets stuck in the cylinder wall, after which the shell
starts to move, slipping on the surface. The coefficient of
static and kinetic friction between the cylinder and the
horizontal surface are the same, and are equal to µ < 2.

m ~u

RM

µ

(a) (4 pt) In which direction does the cylinder rotate?
State your answers for different values of µ.

(b) (6 pts) Find its angular acceleration about the
centre of the cylinder just after the impact.

(c) (10 pts) It is known that some time after the im-
pact, the horizontal projection of the velocity of
the center of mass of the system is equal to v, and
the angular velocity of the cylinder is Ω. Till this
point, the cylinder has rotated through an angle φ.

How much heat was released in the system till this
point, if the cylinder all the time after the impact
moved with slipping, rotating in one direction? As-
sume that all energy losses are dissipated in the
form of heat.

Solution 4:

(a) Combining both force equations in the vertical direction and our ’torque’ equation and that F0 = µN ,
we get

α =
g

R
· (µ− 1)m+ µM

(1− µ)m+M

N =
(2m+M)Mg

M + (1− µ)m

Note that α and N tend to infinity as µ → µ0 = 1 + M
m . This means that the normal force can even

increase infinitely if a large impulse is provided by the bullet. For m = M , µ0 = 2, and since the
problem says that µ < 2, we know that both N and α are finite and always remain true.

Now, for the direction of rotation, let us observe when α changes parity. Notice that for µ < µ1 = m
M+m ,

we have α < 0, meaning that the cylinder will rotate counter-clockwise. Let us try to understand what
could’ve caused such a situation? This could’ve been caused by a large impulse by the bullet, when it
exceeded the impulse due to friction. Similarly, for µ > µ1, we have that the cylinder rotates clockwise.
Note that since m < M , 0 < µ1 <

1
2 . So are answers for the first part are

Direction of rotation =

{
Clockwise if µ > m

M+m

Counter-clockwise if µ < m
M+m

(b) Now we try to find the heat released in the system at any time. For the sake of a definite solution,
assume that the cylinder has rotated an angle φ clockwise. At this moment, we have the velocity v of
the cylinder along the horizontal, angular velocity Ω, and the linear velocity of rotation of the bullet
v1. (clearly v1 = ΩR) Now let us write the energy of the bullet in the reference frame of the axis of
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the cylinder:

E = mgR sinφ+
1

2
mv1

2

Transcending back to the original lab frame, since we need to replace the velocity of the bullet accord-
ingly, and using v1 = ΩR, we get

E = mgR sinφ+
1

2
mv0

2 +
1

2
mΩ2R2 +mΩRv0 sinφ

and we have the energy of the cylinder in the lab frame

Ec =
1

2
Mv0

2 +
1

2
MΩ2R2

Also note that from transitioning from the cylinder axis’ frame to the lab frame, we convert the centre
of mass velocity as

v = v0 + Ωr sinφ

where r is the distance of the cylinder’s centre to the new centre of mass. The value of r can be found
easily:

Mr = m(R− r)⇒ r =
m

M +m
R

So the work-energy theorem becomes

∆H = E + Ec −
1

2
mv0

2

Substituting the values of E and Ec, we finally get

∆H =

{
1
2mu

2 + m2Ω2R2 sin2 φ
2(m+M) − m+M

2 (v2 + Ω2R2) +mgR sinφ if counter-clockwise
1
2mu

2 + m2Ω2R2 sin2 φ
2(m+M) − m+M

2 (v2 + Ω2R2)−mgR sinφ if clockwise

Comment (not for grading purposes):

In the process, we assumed that the combined system of bullet and cylinder does not start its mo-
tion by “jumping up”. This directly affects our approach to the problem and is not entirely obvious.
In the perfectly inelastic collision, the angular momentum of the bullet-cylinder system is conserved. As
above, we assume the velocity of the centre of mass v to be directed along the horizontal.
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Problem 5: Mathematical Physics (18
pts)

The study of mathematics has almost always paved the
way for the development of new ideas in physics. New-
tonian mechanics could not be possible without first in-
venting calculus, and general relativity could not have
existed without heavy development in tensors. How-
ever, there are numerous cases where physical insight
have paved the way for mathematics.

Perhaps the most notable would be the Brachis-
tochrone problem, which asks for the path that leads
to the fastest descent influenced by gravity between two
given points. While it is solvable through the calculus of
variations, Newton proposed an easier solution by mod-
elling the path of light through a medium with a variable
index of refraction. You may read about this problem
and the fascinating history behind it here.

We will not be dealing with this specific problem, but
rather multiple short mathematics problems that can be
can be represented with a physical analog. To receive
points, you must use the suggested physical set-up.

(a) (4 pts) Show that for small values of x, we have

cos(x) = 1− x2

2
.

Physical Setup: Consider a small object moving in
a circle.

(b) (8 pts) A ladder of length ` with a thickness of
0.3 m is transported around a right angled corner
where the two hallways leading up to it have a
width of 3 m and 5 m. What is the maximum
length of the ladder such that it can be success-
fully transported across?

Physical Setup: Consider the ladder as a com-
pressed spring that can freely expand in only
its longitudinal direction. Do not explicitly take
derivatives. Instead, consider a force/torque bal-
ance. You may or may not need to solve an equa-
tion numerically.

(c) (6 pts) Prove the AM-QM inequality:

a1 + a2 + · · ·+ an
n

≤
√
a2

1 + a2
2 + · · ·+ a2

n

n

Physical Setup: Design circuit(s) and compare
their measurable quantities with each other quali-
tatively (or otherwise).

Solution 5:

(a) Consider a small particle starting from rest on a circular path. It quickly and uniformly accelerates to
a speed v in a very small time interval ∆t such that v∆t

R � 1 where R is the radius of the circle.

Since this time interval is so small, the acceleration is directed inwards. Without loss of generality,
let us define the inwards direction as the positive +y direction. The displacement ∆y is given by
R (1− cos θ) which gives:

R (1− cos θ) =
1

2
at2

At time t, since the particle hasn’t moved very far, the inwards acceleration is still pointed in the +y
direction and using equations for circular motion, it has a magnitude of:

a =
v2

R

Making the substituting, we can simplify:

1− cos θ =
1

2

(
vt

R

)2

https://en.wikipedia.org/wiki/Brachistochrone_curve


July 3 - 6, 2020 Online Physics Olympiad 2020 - Invitational Round

Since vt = Rθ is the distance traveled, this simplifies to:

1− cos θ =
1

2
θ2 =⇒ cos θ = 1− 1

2
θ2

(b) Treating the ladder as a spring, we see that its length is directly related to its potential energy.
Determining the point at which the ladder’s length is at a minimum is equivalent to determining the
point at which the rigid spring’s potential energy is at a minimum. Using the fact that:

F = −dU
dx

implies that when the potential energy is at a minimum, the net force must be equal to zero. Therefore,
we can set up a force and torque balance in order to solve for the shortest length. There are three
normal forces to take into account. Balancing forces gives two equations, and a torque balance gives
the third. Solving a system of three equations will allow us to solve the problem.

Perhaps a slicker way is to realize that these three forces must be concurrent. At least two of the
normal force vectors will intersect, and performing a torque balance where the pivot is selected to be
that intersection point, these two normal force vectors will not contribute to a torque. In order to
satisfy

∑
τ = 0, the third normal force vector must also intersect at this same place. This turns it

into a geometry problem.

Solving the problem geometrically or analytically, you end up solving the equation:

a cos θ − `
sin2 θ

=
b sin θ − `

cos2 θ

which is possible to be solved numerically (or solved through an approximation). This wasn’t specified
on the exam, so most teams who arrived at this equation would have received the marks.

Solving, we get L ≈ 10.6 m.

(c) We connect several batteries with an electromotive force εi and an identical internal resistance r in
parallel with one another, and the entire system is in parallel with a wire with zero resistance. Using
Kirchoff’s Loop rule, the voltage drops across each internal resistor is going to be the same. Therefore,
the power dissipation is:

P1 =
ε2

1 + ε2
2 + · · ·+ ε2

N

r

if there are N such resistors. We then create a second circuit where all of these resistors are in series.
The current is now the same and the total power dissipation is:

P2 =
(ε1 + ε2 + · · ·+ εn)2

Nr

If we make the claim that P1 ≥ P2, the AM-QM inequality will naturally follow. To do this, we can
look at the amp-hour capacity of batteries in parallel vs in series. In series, the amp-hour capacity
of each resistor must be the same (and be equal to the capacity of the weakest battery). If this was
not the case, then some batteries will be depleted before others. This is not the case for parallel and
will only be the same if ε1 = ε2 = · · · = εN , in which case we have P1 = P2. Due to this, the power
dissipation in the first circuit must be equal or greater than the one in the second circuit, proving the
AM-QM inequality.
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Problem 6: Flat Earth (22 pts)

In this problem, we will explore the true gravitational
model of the earth, not the one that is claimed in most
textbooks. Contrary to popular belief, the Earth is a flat
circle of radius R and has a uniform mass per unit area
σ. The Earth rotates with angular velocity ω.

(a) (5 pts) A pendulum of length ` that is constrained
to only move in one plane is placed on the ground
at the center of the Earth. The pendulum has
more than one angular frequency of small oscilla-
tions. Find the value of each angular frequency of
small oscillations Ω(0),Ω1(0), ... in terms of σ, ω, `,
and physical constants and the equilibrium angle
θ, θ1, ... that the frequency occurs at. Assume for
all parts that `� R.

An equilibrium angle corresponds to the angle with

respect to the vertical where there is an equilibrium
point.

(b) (2 pt) Investigate the stability of each equilibrium
position with varying angular velocity of the Earth.

(c) (12 pts) The entire pendulum is moved a hori-
zontal distance r � R away from the center of the
Earth. It is oriented so that it is constrained to
only move in the radial direction. Now, find the
new angular frequency Ω(r) of small oscillations
about the lowest equilibrium point in terms of the
given parameters, assuming that ω2r is much less
than the local gravitational acceleration.

(d) (3 pts) The angular frequencies Ω(0) and Ω(r) are
both measured and the difference is found to be
∆Ω. Assuming that ∆Ω � Ω(0) and ω2 � g

` , de-
termine σ in terms of ω, r,Ω(0),∆Ω, and physical
constants.

Solution 6:

(a) The first thing that we note is that the acceleration due to the gravitational force is different as
compared to the one on Earth. Consider a cylindrical Gaussian surface that has it’s circular faces
parallel to the Earth. From Gauss’s Law of gravitation, we can calculate the acceleration due to
gravity on a flat plane to be

4πGm = 2× πr2g =⇒ g = 2πGσ

by substituting m = σπr2. Let us now consider a small displacement of the mass m from the origin.
We see that there are two forces involved: the centrifugal force, and the gravitational force. We now
draw a free-body diagram as shown below:

R

h

θ

σ g sin θ
mω2` sin θ cos θ

Note that the gravitational force will be restoring and is given by mg sin θ ≈ mgθ. The centrifugal
force is directed outwards and is given by mω2` sin θ cos θ ≈ mω2`θ. Writing Newton’s Laws on the
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pendulum now gives us

m`θ̈ = mω2`θ −mgθ =⇒ θ̈ = −
(g
`
− ω2

)
θ.

An equilibrium position occurs when θ̈ = 0. This tells us that the two equilibrium positions are defined
by

θ1 = 0, θ2 = arccos
( g

ω2`

)
.

For oscillations near θ1 = 0, we can use small-angle approximations gives us

θ̈ = −
(g
`
− ω2

)
θ.

Therefore, we see Ω(0) =
√

g
` − ω2 =

√
2πGσ

`
− ω2 .

For oscillations near θ2 = arccos
(
g
ω2`

)
, we let θ = θ1 + ϕ where ϕ � θ1. Using a first order approxi-

mation tells us that

ϕ̈+
(g
`

+ ω2ϕ sin θ1 − ω2 cos θ1

)
(sin θ1 + ϕ cos θ1) = 0.

Simplifying gives us
ϕ̈ = −(ω2 sin2 θ1)ϕ.

This tells us that Ω1(0) = ω sin θ = ω
√

1− g2

ω4`2 =
1

ω`

√
ω4`2 − 4π2G2σ2 .

Remark 1: We can find the gravitational acceleration on the planet by in fact another way of analyzing
the force per each infinitesimal ring. We can split the flat Earth into many tiny rings as shown below

dR

R

h

θ

σ

d~F

Each ring provides a force of d~F . If each ring has a thickness dR, our force will be given by

dF =
Gmσ

h2 +R2
cos θ · (π(R+ dR)2 − πR2).
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Using the fact that cos θ = h√
h2+R2

, we then find that

dF =
Gmσ

h2 +R2

h√
h2 +R2

· (π(R+ dR)2 − πR2).

Using a first order approximation gives us

(π(R+ dR)2 − πR2) ≈ 2RdR.

We then find by substituting that,

dF =
2GmRσh

(h2 +R2)3/2
dR.

Now, integrating this force dF from 0 to ∞ gives us

F =

∫ ∞
0

dF = 2Gmσh

∫ ∞
0

R

(h2 +R2)3/2
dR = 2πGσm.

The gravitational acceleration is then given by

g ≡ 2πGσm

m
= 2πGσ.

�

Remark 2: We can find the equation of motion with the Euler-Lagrange equations. Let us consider a
rotating frame at the center of the Earth. The pendulum’s coordinates are then given by

(x, y, z) = (` sin θ, 0,−` cos θ)

which implies that the velocity of the pendulum is given by

(ẋ, ẏ, ż) = (`θ̇ cos θ, 0, `θ̇ sin θ).

In the fixed frame, the pendulum has an additional velocity from the centrifugal force which is given
by

~ω × ~r = (0, 0, ω)× (` sin θ, 0,−` cos θ) = (0, ω` sin θ, 0).

We now write the lagrangian of the system as

L ≡ T − V

=
1

2
m

√
(`θ̇ cos θ)2 + 02 + (`θ̇ sin θ)2 +

1

2
m`2ω2 sin2 θ +mg` cos θ

=
1

2
m`2θ̇2 +

1

2
m`2ω2 sin2 θ +mg` cos θ.

Now, using the Euler-Lagrange equations gives us

d

dt

(
∂L
∂θ̇

)
=
∂L
∂θ

=⇒ θ̈ = −
(g
`
− ω2 cos θ

)
sin θ.

�

(b) We have two cases:

Case 1: (oscillations for Ω(0)) If ω <
√

g
` =

√
2πGσ
` , we see that the oscillations are stable. The

oscillations would follow the equation

θ(t) = A1 cos(Ω(0) + φ1)
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where A1 and φ1 are constants to be determined from initial conditions.

Case 2: (oscillations for Ω1(0)) If ω >
√

2πGσ
` we see that the oscillations are stable. The oscillations

would follow the equation
ϕ(t) = A2 cos(Ω1(0) + φ2)

where A2 and φ2 are constants to be determined from initial conditions.

If ω =
√

2πGσ
` the oscillations are neutrally stable but do not display stable small oscillations.

(c) We use the fact that, for small oscillations of an object subject to a potential U(x), the frequency of
small oscillations will be defined as

ω =

√
U ′′(x)

meff
.

The potential energy is due to the gravitational potential and the centrifugal potential:

U = −mg` cos θ − 1

2
mω2(r + ` sin θ)2

We see that
d2U

dθ2
= mg` cos θ +mω2r` sin θ +mω2`2(sin2 θ − cos2 θ)

When evaluated at θ = θ0, the equilibrium position,

U ′′(θ0) = mg` cos θ0 +mω2r` sin θ0 +mω2`2(sin2 θ0 − cos2 θ0) = keff.

We now need to find the effective mass. Note that the kinetic energy is given by

1

2
m`2θ̇2 =

1

2
meffθ̇

2 =⇒ meff = m`2.

Thus, the frequency is given by

Ω(r) =

√
keff

meff
=

√
g

`
cos θ0 +

ω2r

`
sin θ0 + ω2(sin2 θ0 − cos2 θ0)

Now, we have cos θ0 = g√
ω4r2+g2

≈ 1− ω4r2

2g2 and sin θ0 ≈ ω2r
g . Substituting,

Ω(r) =

√
g

`
− ω4r2

2g`
+
ω4r2

g`
+
ω6r2

g2
− ω2 +

ω6r2

2g2

Ω(r) =

√
Ω(0)2 +

ω4r2

2g`
+

3ω6r2

2g2
=

√
Ω(0)2 +

ω4r2

4πGσ`
+

3ω6r2

8π2G2σ2

(d) Note that we can write

Ω(r) =

√
Ω(0)2 +

ω4r2

2g2

(g
`

+ 3ω2
)

= Ω(0)

√
1 +

ω4r2

2g2

( g
` + 3ω2

g
` − ω2

)
Therefore, we have

Ω(r) ≈ Ω(0)

√
1 +

ω4r2

2g2
≈ Ω(0)

(
1 +

ω4r2

4g2

)
Therefore, ∆Ω = ω4r2

4g2 Ω(0). This implies that

g2 = 4π2G2σ2 =
ω4r2Ω(0)

4∆Ω

We can solve for σ to get σ =
ω2r

4πG

√
Ω(0)

∆Ω
.
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Problem 7: Boltzmann Statistics (24 pts)

In this problem, we will explore Boltzmann Statistics
and using it to build similar models for quantum parti-
cles such as bosons and fermions.

(a) (8 pts) Consider a energy of a gaseous molecule
in space is given by 5

E = E0(|x|r + |y|r + |z|r)

where the coordinates of the molecule are repre-
sented by (x, y, z), E0 is a constant with appro-
priate units, and r is a non-negative real num-
ber. The system is in thermal equilibrium with
a reservoir of temperature T . Calculate explicitly
using appropriate statistical methods, the average
energy of a thermodynamic system consisting of
such gaseous molecules, considering the Maxwell-
Boltzmann distribution. Analyse your result and
provide a qualitative argument to support it.

Hint: If you are not familiar with how to solve this
part, try part (b) first.

(b) (6 pts) Consider a specific case in which

E = E0(x2 + y2 + z2)

except where |x|, |y|, |z| < 2 and particles can only
exist at integer values of x, y, z. If the system is
still in thermal equilibrium at a temperature T ,
calculate the average energy.

(c) (6 pts) In this system, there are two particles.
What is the probability that at least one of these
particles will be in the ground state (energy is zero)
if:

(i) The two particles are distinct.

(ii) The two particles are identical bosons.

(iii) The two particles are identical fermions
(fermions follow Pauli exclusion principle).
For simplicity, ignore spin.

For each of the parts, assume that there are no
other interactions (e.g. electromagnetism) and fo-
cus mainly on a statistical argument.

(d) (4 pts) Rank the probabilities in part (c) from
highest to lowest when the temperature is

(i) high

(ii) low

For each, explain qualitatively why this must be
true.

Solution 7:

(a) In Maxwell-Boltzmann’s distribution, the probability that an isolated particle occupies the point
A(x, y, z) is given by

dP(E) = P(E)dV = −e
− E0
kBT

Z

where Z denotes the partition function. Note that although we write the probability such that an
isolated particle occupied the space, but for a system of N particles, there would be an extra factor
of N ! in the partition function, but since the particles are considered independent, this factor would
cancel out in further calculation anyway. Now for the calculation of Z, we normalize the probability
dP(E) over all possible states; meaning that we convert the probability function to the probability
density function by summing total probability as 1. This gives us

Z =

∫∫∫
R3

e−β·E0·(|x|r+|y|r+|z|r)dxdydz

(More accurately, the partition function of a set of molecules would be found by summing, and not
integrating over the space, but since it is a continuous function, the sum reduces to an integral.) From
the statistical definition of average energy per unit particle, we have

〈E〉 =

∫∫∫
R3

E · dP(E) =

∫∫∫
R3

E0(|x|r + |y|r + |z|r)dP(E)
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Substituting the partition function from above, we obtain

〈E〉 =

∫∫∫
R3 E0(|x|r + |y|r + |z|r)e

(
− E0
kBT

(|x|r+|y|r+|z|r)
)
dxdydz∫∫∫

R3 e

(
− E0
kBT

(|x|r+|y|r+|z|r)
)
dxdydz

〈E〉 =

∑
xi∈(x,y,z)

∫∫∫
R3 e
−E0xi

r

kT E0xi
rdxi∑

xi∈(x,y,z)

∫∫∫
R3 e
−E0xi

r

kBT dxi

Now let us evaluate some integrals to obtain a closed form for 〈E〉 above. Applying by-parts, we have∫ ∞
0

e
−E0xi

r

kBT dxi =

∫ ∞
0

e
−
((

E0
kBT

) 1
r xi

)r
dxi

= xi

(
E0

KBT

)1/r

e
−E0x

r
i

rBT

∣∣∣∣∣
∞

0

+ r

∫ ∞
0

E0x
r
i

KBT
e
−E0x

r
i

kBT d

(
xi

(
E0

kBT

) 1
r

)

Note that after applying the bounds, xi

(
E0

KBT

)1/r

e
−E0x

r
i

rBT

∣∣∣∣∞
0

reduces to 0. This gives

∫ ∞
0

e
−
((

E0
kBT

) 1
r xi

)r
dxi = r

∫ ∞
0

E0x
r
i

KBT
e
−E0x

r
i

kBT d

(
xi

(
E0

kBT

) 1
r

)

The same integral ratio appeared in our original average energy per unit particle expression. However,
the above integral was performed across one-dimension. In three dimensions (the integral is non-
degenerate across all three dimensions), our average energy per particle expression becomes

〈E〉 =

∫∫∫
R3 e
−E0xi

r

kT E0xi
rdxi∑

xi∈(x,y,z)

∫∫∫
R3 e
−E0xi

r

kBT dxi

= E0 ×
3kBT

rE0
=

3kBT

r

Hence, the average energy of a thermodynamic system of N such particles is

〈Es〉 =
3NkBT

r

As a sanity check, note that the average energy is independent of E0, which was expected. This is
because for any quadratic function in space (specifically, here this is r = 2) we have the ”Law of
Equipartition”, which states that every degree of freedom has an average energy of 1/2kBT , which is
confirmed by the obtained expression.

Aliter: Consider the partition function:

Z =
∑

e−βE =
∑

e−βE0(xr+yr+zr)

We can turn this into the integral form:

Z =
1

δxδyδz

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−βE0(xr+yr+zr) dx dy dz

Letting a = (βE0)1/rx, b = (βE0)1/ry, and c = (βE0)1/rz, we can rewrite this as:

Z =
1

δxδyδz(βE0)3/r

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−(ar+br+cr) da db dc =
C

δxδyδz(βE0)3/r
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where C is a constant, equal to the integral. The average energy is given by:

Eavg =
−1

Z

∂Z

∂β

=
−δxδyδz(βE0)3/r

C

C

δxδyδz

(
−3

r
E0(βE0)

−3−r
r

)
=

3

rβ

=
3

r
kBT

(b) The energy of any given particle can be 0, 1, 2, 3 (working in units where E0 = 1). We need to calculate
the Boltzmann factor for each energy as well as how many ways each energy can be achieved.

• Energy 0: e0β = 1 → 1 way.

• Energy 1: e1β → 6 ways.

• Energy 2: e2β → 12 ways.

• Energy 3: e3β → 8 ways.

In total, the partition function is:

Z = 1 + 6eβ + 12e2β + 8e3β

The average energy is thus:

Eavg = − 1

Z

∂Z

∂β

= − 6e−β + 24e−2β + 24e−3β

1 + 6e−β + 12e−2β + 8e−3β

Note that this can be factored further.

(c) The probability of at least one particle being in the ground state is equal to one minus the probability
of no particles being in the ground state. The probability of having some energy Ei is:

Pi =
(number of ways this can happen)e−βEi

Z

Summing up all the probabilities for nonzero energies gives us:

Pat least 1 in ground state = 1− Zrestrictions

Zno restrictions

(i) If two particles are distinct, they can take on energies 1, 2, 3, 4, 5, 6. Similar to part (b), we list out
all the possible ways to achieve these energies if there are no restrictions:

• Energy 0: 12 = 1 way.

• Energy 1: 2(1 · 6) = 12 ways.

• Energy 2: 2(1 · 12) + 62 = 60 ways.

• Energy 3: 2(1 · 8) + 2(6 · 12) = 160 ways.

• Energy 4: 2(6 · 8) + 122 = 240 ways.

• Energy 5: 2(12 · 8) = 192 ways.

• Energy 6: 82 = 64 ways.

If no particles are in the ground state, then:
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• Energy 2: 62 = 36 ways.

• Energy 3: 2(6 · 12) = 144 ways.

• Energy 4: 2(6 · 8) + 122 = 240 ways.

• Energy 5: 2(12 · 8) = 192 ways.

• Energy 6: 82 = 64 ways.

The probability is thus:

P1 = 1− 36e−2β + 144e−3β + 240e−4β + 192e−5β + 64e−6β

1 + 12e−β + 60e−2β + 160e−3β + 240e−4β + 192e−5β + 64e−6β

Perhaps an easier way to do this problem is to think of the partition functions as generating functions.
The partition function for placing two particles with no restrictions is the square of placing a single
particle:

Z2, no restriction = Z2
1, no restriction =

(
1 + 6e−β + 12e−2β + 8e−3β

) (
1 + 6e−β + 12e−2β + 8e−3β

)
Any combination of two terms will yield a different distinct possibility. Therefore, it is possible to
express the answer in terms of

Z ≡
(
1 + 6e−β + 12e−2β + 8e−3β

)
but we will not be doing that here, time to bash away!

(ii) If two particles are identical bosons, they can take on the same energy, except we have to adjust
for overcounting. With no restrictions:

• Energy 0: 1 way.

• Energy 1: 1 · 6 = 6 way.

• Energy 2: 1 · 12 +
(

6
2

)
+ 6 = 33 ways.

• Energy 3: 1 · 8 + 6 · 12 = 80 ways.

• Energy 4: 6 · 8 +
((

12
2

)
+ 12

)
= 126 ways.

• Energy 5: 12 · 8 = 96 ways.

• Energy 6:
(

8
2

)
+ 8 = 36 ways.

With restrictions:

• Energy 2:
(

6
2

)
+ 6 = 21 ways.

• Energy 3: 6 · 12 = 72 ways.

• Energy 4: 6 · 8 +
((

12
2

)
+ 12

)
= 126 ways.

• Energy 5: 12 · 8 = 96 ways.

• Energy 6:
(

8
2

)
+ 8 = 36 ways.

So:

P2 = 1− 21e−2β + 72e−3β + 126e−4β + 96e−5β + 36e−6β

1 + 6e−β + 33e−2β + 80e−3β + 126e−4β + 96e−5β + 36e−6β

(iii) If two particles are identical fermions, they can take on the same energy (except ground state),
except they can’t be in the same state.

• Energy 1: 1 · 6 = 6 ways.

• Energy 2: 1 · 12 + 1 ·
(

6
2

)
= 27 ways.

• Energy 3: 1 · 8 + 6 · 12 = 80 ways.

• Energy 4: 6 · 8 +
((

12
2

))
= 114 ways.

• Energy 5: 12 · 8 = 96 ways.
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• Energy 6:
(

8
2

)
= 28 ways.

With restrictions:

• Energy 2: ·
(

6
2

)
= 15 ways.

• Energy 3: 6 · 12 = 72 ways.

• Energy 4: 6 · 8 +
((

12
2

))
= 114 ways.

• Energy 5: 12 · 8 = 96 ways.

• Energy 6:
(

8
2

)
= 28 ways.

P3 = 1− 15e−2β + 72e−3β + 114e−4β + 96e−5β + 28e−6β

6e−β + 27e−2β + 80e−3β + 114e−4β + 96e−5β + 28e−6β

(d) For high temperature: fermion ¿ distinct ¿ boson. As well as including the math, justification needs to
be on the lines of every state having an equal probability, and thus we want the ratio between desired
and total states.

For low temperatures, it’s reversed. Particles will tend to settle in the lowest energy state (which is
what we desire), and distinct particles have more ways to do it than identical bosons. Fermions cannot
have two particles in the same state, further decreasing its chances.
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Problem 8: Radiation (40 pts)

The Nobel Prize in Physics 2019 was awarded for pro-
viding a new understanding of the universe’s structure
and history, and the first discovery of a planet orbiting
a solar-type star outside our solar system.

Since ancient times, humans have speculated whether
there are worlds like our own, with points of views at the
extremes expressed thousands of years ago. In modern
times, the possibility of observing planets orbiting stars
other than the Sun was proposed more than 50 years
ago, and has grown into a vast and ever-expanding the-
ory to make the evolution of the universe more clear to
us than ever before. In 1995, the very first discovery of a
planet outside our solar system, an exoplanet, orbiting a
solar-type star was made. This discovery challenged our
ideas about these strange worlds and led to a revolution
in astronomy. The more than 4,000 known exoplan-
ets are surprising in their richness of forms, as most
of these planetary systems look nothing like our own,
with the Sun and its planets. These discoveries have led
researchers to develop new theories about the physical
processes responsible for the birth of planets.

(Taken from the Nobel Prize in Physics 2019 sum-

mary, and the Laureates’ popular science and scientific
views.)

In this problem, we analyse and create a model for
a system of two fictitious celestial bodies: an exoplanet
and a solar-type star. Unless specified otherwise, con-
sider the two bodies to be solely in each other’s gravi-
tational influence and rotate about their barycentre. In
the three parts that follow, we will model the physics of
a star, of the star-planet model, and the planet respec-
tively.

Part A

The star, with mass Ms = 2M� (twice the mass of our
Sun) and radius R� uses nuclear fusion reactions to pro-
vide pressure against gravity and electron degeneracy
pressure, so as to maintain hydrostatic equilibrium in
the star. As long as the hydrostatic equilibrium is pre-
served, the star is said to be in “main sequence”. How-
ever, once the energy from the reactions taking place in
its core start running out, the star’s outer layers swell
out to form a red giant. The core of the star (having
a radius Rc) starts to shrink, becoming hot and dense;
the temperature of the core rises to over a 100 billion
degrees, and the pressure from the proton-proton inter-
actions in the core exceeds that of gravity, causing the
core to recoil out from the heart of the star in an explo-
sive shock wave. In one of the most spectacular events in
the Universe, the shock propels the material away from
the star in a tremendous explosion called a supernova.
The material spews off into interstellar space.

Being solar-type, this star has the same proton-
proton nuclear fusion chain reaction as our Sun: essen-
tially, this is conversion of four protons (mass of a proton
is mP ) into 1 He nucleus having mass mHe. The star is
said to have a “stable lifetime” as long as it is in its
“main sequence”. The energy emitted by the star pass-
ing a sphere of radius r per unit time is P (r), constant
over time and the surface of the imaginary sphere of ra-
dius r. The density of the exoplanet having radius rE is
a constant, ρ, and it orbits around the star in a circular
orbit of radius rSE. Neglect any convection effects in the
star.

(a) (4 pts) Treating the solar-type star as a per-
fect black-body, estimate the temperature of the
surface of the star T� (assumed in thermal equi-
librium) by integrating over all frequencies using
Planck’s distribution for the energy density (de-
fined as the energy per unit volume for a given
frequency interval (ν, ν + dν):

u(ν)dν =
8πhν3

c3
dν

(e
hν
kT� − 1)

where the constants h and k have their usual mean-
ings. For this part only, note that the energy flux
from the star onto the exoplanet is J0. You can use
T� as the surface temperature in the later parts.

(b) (8 pts) Estimate an expression for, during the
main sequence of the star:

(i) the number of protons being fused together
per second.
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(ii) the stable lifetime of the star, assuming η =
1% mass of the star can undergo nuclear fu-
sion. The change in the temperature or size
of the star is insignificant. Assume the only
fusion is between protons.

(c) (8 pts) Find the temperature gradient dT (r)/dr
of the star as a function of the radial distance r
from the center, such that Rc ≤ r ≤ R� if the star
is in its main sequence, or in a hydrostatic equilib-
rium. Neglect any quantum-mechanical pressure
effects such as electron degeneracy pressure, and
assume that pressure from electromagnetic radia-
tion is much larger than any other pressure. State
all assumptions.

(d) (1 pts) What is the temperature at r = Rc, the
outermost layer of the core?

(e) (2 pt) From experiments, it was found that the
temperature gradient of the star is actually

dT (r)

dr
= −9kGM�cP (r)

128π2σr2T 3

Here the modulus of k is one, and has appropriate
dimensions. For what value of P (R�) (Pr evalu-
ated at the surface of the star) will the star’s main
sequence end, leading to the formation of a super-
nova?

Part B

In this part, we will analyse the radiation effects
from the star onto the exoplanet. Assume only
black body radiation from the star on the exo-
planet. No light is absorbed in the region between
the star’s and the exoplanet’s surface.

(f) (5 pts) The distance between the star and the
exoplanet is rSE. For this part, assume the sur-
face of the exoplanet has a constant and uniform
reflectance γ. What is the force exerted by the ra-
diation from the star on the exoplanet? For the
exoplanet’s gravitational force to completely bal-
ance out the radiation force, how large must the

radius of the exoplanet rE be? Comment on your
results and their feasibility.

Part C

(g) (2 pt) Find the temperature TE of the outermost
surface of the planet, assumed constant over the
whole surface from (a). Assume the planet’s sur-
face to be a perfect black body.

(h) (10 pts) Model the exoplanet to be made up of
N concentric shells equally spaced across the vol-
ume of the planet. Between the shells is a peculiar
kind of thick type of tectonic rocks which allow no
emission, reflection or absorption of energy. How-
ever, absorption or emission of radiation energy
may take place. The emissivity of all the shells
are the same, and are equal to ε, constant and
uniform over a surface. Reflection, emission and
absorption of any energy due to radiation from the
shells, however, may take place. Assume all con-
duction and convection effects to also be negligible.
The temperature of the exoplanet as a function of
r is represented by

T (r) = T0

(
1− n

10N

)
where n is the nth shell from the centre of the
planet and T0 is an appropriate constant as cal-
culated from the previous part (which is unknown,
meaning that you need to answer in any variables
calculated before). Calculate the total thermal en-
ergy due to radiation falling on the outermost shell
per unit time. The planet is maintained in a state
of thermal equilibrium; this is done by an atmo-
spheric material that allows a fraction (β, which
is unknown) of energy from the star falling on the
exoplanet. This material only absorbs a fraction of
energy it receives from the star. Do NOT assume
any such effects for any of the other parts, since
they are meant to be crude estimates of the actual
calculation. Also compute β.

Solution 8:

(a) Using Planck’s distribution,

u(ν) =

∫ ∞
0

8πhν3

c3
dν

(e
hν
kT� − 1)
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This integration is well known and equal to ζ(4) = π4/15.

Returning to our problem,

u(ν) =
8π5kT�

4

15h3c3

The energy flux onto the exoplanet is

J0 = cu

(
Ω

4π

)
where Ω = πR�

2

r2SE
. So

J0 = c× 8π5kT�
4

15h3c3
× πR�

2

4πr2
SE

⇒ T� =

(
60J0

3c2rSE
2

8π5kR�
2

) 1
4

We get the same result by applying Stefan-Boltzmann’s radiation law for a black body, since this is
how the law is derived.

(b) (i) In a single nuclear fusion reaction, four protons fuse into one helium nucleus. Let N be the rate of
such fusion reactions (per second), and P (R�) = 4πσR�

2T�
4 be the rate of total energy emitted by

the star at its surface. By Einstein’s law of mass energy conservation, we have

P (R�) = N (4mP −mHe)c2 = 4πσR�
2T�

4

which gives

N =
4πσR�

2T�
4

(4mP −mHe)c2

(ii) Let the stable lifetime of the star be T0. The total number of fusion reactions in the lifetime is
then (roughly) N × T0, and we have the following expression by substituting N from (i):

N × T0 =
2M�η

4mp
⇒ T0 =

2M�ηc
2

4πσR�
2T�

4

[
1− mHe

4mp

]

(c) Consider a circular strip between radial distances r and r + dr from the centre of the star. For
hydrostatic equilibrium to be established, the net force on this strip must be zero, or the pressure
forces and gravitational forces on the layer must exactly balance. Let m(r) and ρ(r) be the mass and
density of a sphere of radius r respectively. A pressure force of P (r) on this sphere. We have from
force balance:

−Gm(r)ρ(r)4πr2dr

r2
= [P (r + dr)− P (r)]4πr2

⇒ dP

dr
= −Gm(r)ρ(r)

r2

Note that radiation pressure can be written as Pr = 4σT 4

3c by Stefan Boltzmann’s law. Using this with
the pressure gradient equation, we can write the temperature gradient of the star as:

dT

dr
=

3c

16σT 3

dP

dr
= −3Gm(r)ρ(r)c

16σT 3r2
= − 9GM�

2rc

16πσR�
6T 3

(d) To find the temperature at any point on the star, we solve the gradient equation obtained in (c).
Applying the boundary condition T (R�) = T� and separating variables, we have

T (r) =

[
T 4
� +

9GM2
�c

16πσR6
�

(R2
� − r2)

] 1
4
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At r = Rc, we have

T (Rc) =

[
T 4
� +

9GM2
�c

16πσR6
�

(R2
� −R2

c)

] 1
4

(e) From the problem statement, we know that the experiments suggest the following:

dT (r)

dr
= −9kGM�cP (r)

128π2σr2T 3

The main sequence of the star lasts as long as pressure from the gravitational force is greater than the
net radiation pressure.

Comment (not for grading purposes):

Throughout the problem, density of the star is assumed constant and equal to ρ(r) = 6M�
4πR�3 .

Part (a): The integration was required to be carried out in the examination. A well known method
to do this is to split the integral using by parts and express it as the limit of a sum.

Part (c): It is assumed that the pressure balancing the gravitational pressure arises from radiation.
There is pressure due to the gas/fuel in the star and a few quantum mechanical effects, but they can be
neglected for the sake of this problem.
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Problem 9: Piston Gun (40 pts)

In this problem, we examine a model for a certain type of
gun that works by using the expansion of a gas to propel
a bullet. We can model the bullet as a piston. Since we
are assuming atmospheric pressure is negligible, we can
assume that the whole setup is in a vacuum. Also, the
gun is insulated.

An ideal monatomic gas of initial temperature T0 is
inside a long cylindrical container of cross-section area
A. One side of the container is a wall, while the other
side is a piston of mass M that can slide freely along the
container without friction. The total mass of the gas is
m, and it is made up of N particles. Initially, the pis-
ton is at rest and a distance L0 away from the opposite
wall. Then, the piston is released. After a time t, the
piston moves at a speed v. Assume that throughout the
process, the particles on average move very fast.

(a) (5 pts) Assume that m is negligible. Find v.

(b) (6 pts) From now on, do not assume that m is
negligible.

Find the time at which the pressure at the wall
opposite the piston changes. Also, does it increase
or decrease? State all assumptions.

(c) (14 pts) From now on, assume t is much smaller
than the mean free time of the particles of the gas,
and L0 is much smaller than the mean free path.
(During this time interval t, assume that all the
particles still collide many, many times with the
walls, but they don’t collide with each other.) Find
v.

(d) (6 pts) Find the recoil impulse of the gun over the
time t.

(e) (9 pts) Let r > 1 be a dimensionless parameter.
Suppose at time t, the piston is a distance rL0 away
from the wall; then the piston is stopped, and the
gas is allowed to come to equilibrium (after a time
much greater than the mean free time). Find the
total entropy change (throughout the whole pro-
cess) of the gas in terms of r, and verify the Second
Law of Thermodynamics.

Solution 9:

(a) Since m � M , the expansion of the gas can be treated as a reversible process, because pressure,
density, etc. will be uniformly distributed. The process is also adiabatic because the container is
insulated. If x is the position of the piston, we have pxγ is constant, where p is the pressure and

γ =
Cp
Cv

= 5
3 for monatomic gas. Also, Newton’s 2nd Law gives pA = Mẍ. We have ẍ =

p0AL
γ
0

Mxγ , where

p0 = NkT0

AL0
. To find v, we need to solve this differential equation and plug in the boundary conditions

of x(0) = L0 and ẋ(0) = 0. Since the final answer is very complicated, we have decided to award
(almost) full credit for those who end up with correct differential equation and boundary conditions
(and have accurate, thorough reasoning).

(b) Now, we cannot neglect m anymore, so the pressure will not be uniform throughout the gas. In fact,

a pressure wave will start at the piston and travel to the opposite wall at speed c =
√

γp
ρ =

√
5NkT0

3m .

The time it takes is L0

c = L0

√
3m

5NkT0
.

(c) Let L(t) be the position of the piston as a function of time, where L(0) = L0. Let v = L̇. Let the x
direction be along the cylinder’s axis. Consider a particle in the gas with speed vx(t) in the x direction.
We will show that Lvx is a conserved quantity. Since the mean free time is large, we can assume the
particles rarely collide with each other. Since the gas is monatomic, the particle makes elastic collisions
with the walls. When it collides with a stationary wall, the particle’s speed stays the same. However,



July 3 - 6, 2020 Online Physics Olympiad 2020 - Invitational Round

if it moves at speed vx and collides with the piston moving at speed v, it rebounds with a new speed
vx−2v, which can be seen by shifting to the piston’s frame and noting that the particle’s mass is much
smaller than the piston’s. Thus, its decrease in speed is 2v. Since it is moving very fast, on average, it
loses speed 2v every time it takes to go back and forth, which is 2L

vx
. We can write dvx

dt = − 2v
2L
vx

. This

simplifies to Lv̇x + vvx = 0. Integrating, we get Lvx = c where c is an integration constant. Plugging
in initial conditions, we have Lvx = L0vx0, where vx0 is the initial x-velocity of the particle.

Next, we write the conservation of energy equation after time t. For simplicity, we redefine m as the
mass of each particle. ∫ ∞

−∞

1

2
Nm(v2

x0 − v2
x)f(vx0) dvx0 =

1

2
Mv2

where f(vx0) =
√

m
2πkT0

e−
mv2x0
2kT0 is the Maxwell-Boltzmann distribution in the x direction. Using the

fact that Lvx = L0vx0 and substituting for f , we get∫ ∞
−∞

Nmv2
x0(1− L2

0

L2
)

√
m

2πkT0
e−

mv2x0
2kT0 dvx0 = Mv2

Integrating and simplifying, we get

L̇ =

√
NkT0

M

√
1− L2

0

L2

L√
L2 − L2

0

dL =

√
NkT0

M
dt

Integrating and plugging in initial conditions gives

√
L2 − L2

0 =

√
NkT0

M
t

L =

√
L2

0 +
NkT0

M
t2

Finally, we have v =
NkT0t√

M2L2
0 +NkT0Mt2

(d) The recoil impulse is simply the momentum of the gas + piston. The center of mass of the
gas moves at half the speed of the piston, so we have the total momentum Mv + mv

2 =(
M +

m

2

) NkT0t√
M2L2

0 +NkT0Mt2

(e) After a long time, the pressure will again become uniform, and we can use the formula for entropy of
an ideal gas: Nk lnPV γ0 . To do this, we need to first realize that when the piston is stopped, 1

2Mv2

of energy is lost, and combining this fact with the ideal gas law gives us enough information to solve

for the final pressure of the gas. After calculation, we get ∆S = Nk

(
3

2
ln

(
2

3
+

1

3r2

)
+ ln r

)
. Note

that there are no surroundings (vacuum). Also, it is easy to see ∆S is positive if one finds that the
derivative with respect to r is positive for r > 1. Thus, the Second Law of Thermodynamics is verified.
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Problem 10: Magnetostatics (62 pts)

Part A

In 3-D space, a permeable medium covers the region
x > 0, while the rest of the space is vacuum. The
medium’s relative magnetic permeability is µr > 1. A
magnetic dipole with dipole moment m is placed a dis-
tance d away from the permeable medium, at position
(−d, 0, 0). The dipole is pointed towards the +x direc-
tion. Treat the dipole as ideal (point-sized).

(a) (10 pts) Find the force required to keep the dipole
in place.

(b) (3 pts) How much work does it take to slowly pull
the dipole from its original position to infinity (at
x = −∞)?

(c) (5 pts) How much work does it take to slowly ro-
tate the dipole from its original orientation to one
that makes an angle θ with the +x-axis?

After the dipole is rotated an angle θ, a superconducting
ring with radius R and self-inductance L is brought in
from infinity (with initially no current). It is placed so
that the dipole is located at its center and its axis is the
x-axis. Assume that R� d.

(d) (16 pts) Find the current I in the ring.

(e) (8 pts) Find the force required to hold the dipole
in place (not the torque).

Part B

From now on, there is no permeable medium. Ig-
nore any radiation loss for all parts.

(f) (7 pts) The dipole (massM), starts at a distance h
from the centre of the ring (kept fixed) and pointed
towards the centre of the ring (along its axis), and
is projected with a small velocity v0 towards the
centre. Find its speed v as a function of h. Ignore
gravity.

(g) (7 pts) Consider another scenario, in which the
dipole is placed on the axis of a thin infinite mag-
netic tube with surface conductivity σ (defined as
the ratio of surface current density and the electric
field) and radius R, placed at an arbitrary loca-
tion inside it. (You may neglect the self induc-
tance of the solenoid for the sake of this part.) We
find that the motion of the dipole in this case is
damped. Find the damping parameter of this mo-
tion. (Damping parameter is defined as the ratio
of the resistive force to the speed.) Ignore gravity.

(h) (6 pts) Determine the terminal velocity of the
magnet, assuming that it now falls under gravity.
The tube may be considered infinitely long for all
calculation purposes in this part.

Solution 10: For permeable media, two of Maxwell’s equations become

∇ ·B = 0

∇×H = Jfree

where H = B/µ and Jfree = 0 because there is no free current. Note that µ = µrµ0. Thus, the equations
become ∇·B = 0 and ∇×H = 0. Applying these to the boundary, we get the following boundary conditions:

B1,⊥ = B2,⊥ (1)

H1,‖ = H2,‖ (2)

where region 1 is x < 0 and region 2 is x > 0. We claim that if a magnetic monopole of magnetic charge q
is placed a distance d away from the permeable medium instead of a dipole,
(1) in the region x < 0, the magnetic field is equivalent to that of the original monopole and a magnetic
monopole placed at (d, 0, 0) with magnetic charge q1 = −µr−1

µr+1q0 (2) in the region x > 0, the magnetic field

is equivalent to that of the original monopole at its current position but with charge q2 = 2µr
µr+1q0.

To show this, note that as long as we show that the boundary conditions are satisfied, we are done by the
uniqueness theorem because the field in the rest of the space satisfies Laplace’s equation. For the region
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x < 0, the boundary at the real magnetic monopole is already satisfied. Now, the only boundary we need to
consider is the interface x = 0. Consider a point P on the plane x = 0 such that the line from (−d, 0, 0) to P
forms an angle θ with the x-axis. Define Bi to be the magnitude of the field at P from qi. According to the
claim, the magnetic field near P in region 1 has a magnetic field component perpendicular to the interface
of B1,⊥ = B0 cos θ −B1 cos θ. This must be equal to the perpendicular component in region 2, so we have

B0 cos θ −B1 cos θ = B2 cos θ (3)

Now, the parallel component of H in region 1 is B0

µ0
sin θ + B1

µ0
sin θ, which must be equal to the parallel

component of H in region 2, so

B0

µ0
sin θ +

B1

µ0
sin θ =

B2

µ
sin θ (4)

Solving the two equations gives

B1 = −µr − 1

µr + 1
B0 (5)

B2 =
2µr
µr + 1

B0 (6)

Noting that Bi ∝ qi, we see that the claim is true.
We apply the claim to the problem via superposition. We treat the magnetic dipole as two magnetic
monopoles of magnetic charges q and −q that are a small distance s away from each other. Note that
m = qs.

(a) If the dipole is at (−d, 0, 0) and pointed towards the +x direction, the field in region 1 is equivalent
to that of the same dipole superposed with another dipole at (d, 0, 0) pointing in the +x direction
with moment m1 = q1s = µr−1

µr+1m. The field produced by the latter magnetic dipole at position of the

original dipole is given by µ0m1

2πr3 , where r = 2d. The magnetic force on the original dipole is given by

F = m
∂Bx
∂x

=
3µ0mm1

2πr4
=

3µ0mm1

32πd4
=

3µ0(µr − 1)m2

32π(µr + 1)d4
(7)

Note that the force is attractive.

(b) We integrate the force from (a) to get the work done:

W =

∫ ∞
d

3µ0(µr − 1)m2

32π(µr + 1)x4
dx =

µ0(µr − 1)m2

32π(µr + 1)d3
(8)

(c) Instead of rotating the dipole from the original orientation, we first bring the dipole to infinity, rotate
it, and then bring it back to (−d, 0, 0). From part (b), we have the work it takes to bring the dipole
to infinity. Rotating it at infinity requires no work. Finally, to calculate the amount of work required
to bring it back, we find the potential energy of the final system. From our claim, we can apply
superposition to see that the setup is equivalent to one in which the permeable medium acts like a
magnetic dipole at (d, 0, 0) with moment m1 = µr−1

µr+1 and pointed in a direction that makes an angle
−θ with the +x-axis. The general formula for dipole-dipole interaction is given by:

U =
µ0

4πr3
(m1 ·m2 − 3(m1 · r̂)(m2 · r̂)) (9)

which equals

U =
µ0

4π(2d)3
(mm1 cos 2θ − 3mm1 cos2 θ) = −µ0mm1

32πd3
(cos2 θ + 1) (10)

However, this is not the work we do to bring it back from infinity; rather, it is twice our work. To see
why, imagine an external agent bringing in the imaginary dipole from +∞ as we are bringing in the
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real dipole from −∞. By Newton’s third law, the force they apply is equal and opposite to ours, and
so they do the same amount of work as we do. Thus, the work it takes to bring in the dipole from −∞
is

W = −µ0mm1

64πd3
(cos2 θ + 1) (11)

In total, the amount of work done is

W =
µ0(µr − 1)m2 sin2 θ

64π(µr + 1)d3
(12)

(d) By similar reasoning from the previous parts, we can see that the image of the ring with current I will
be a ring centered at x = d with current µr−1

µr+1I in the same direction.

Claim 1: The mutual inductance between the real ring and the image dipole is given by µ0R
2 cos θ

2(R2+4d2)
3
2
∗

µr−1
µr+1A, where A is the area of the dipole.

Proof : By the mutual inductance reciprocity theorem (M12 = M21), we just need to calculate the
flux through the dipole over a current I in the ring. Since the dipole is ideal, we can find the field

at the dipole and do Φ = BA cos θ. After plugging in well-known expression B = µ0R
2

2(R2+x2)
3
2

, where

x = 2d, we get the desired answer.
A natural corollary of this claim is that the mutual inductance between the real ring and the real
dipole is µ0 cos θ

2R m Claim 2: The mutual inductance between the real ring and the image ring is given

by µ0R ln R
d . Proof : Consider the field lines from the ring. Since d << R, the field lines near the

edge of the ring are circular, so the flux through the image ring from the real ring is the same as the
flux through a circle coplanar with the real ring with radius R − d. This is because of the fact that
magnetic field has zero divergence. To find the flux through the circle of radius R− d, we use the fact∫∫

S

B · dS =

∮
C

A · dl

where A is the vector potential. By rotational symmetry, we only need to calculate the tangential
component of A at a point R− d from the center, and then multiply by 2π(R− d). We have

A =
µ0

4π

∫
Idl

r
=
µ0I

4π

∫ 2π

0

R cos θdθ√
R2 + (R− d)2 − 2R(R− d) cos θ

θ̂

We simplify to get

Aθ =
µ0IR

2π
√
R(R− d)

∫ π

0

cos θ√
2 + d2

R2 − 2 cos θ
dθ ≈ µ0I

2π

∫ π

0

cos θ√
2 + d2

R2 − 2 cos θ
dθ

Now, we realize that the integral diverges if d = 0. Thus, since d << R, we see that the integral
is dominated by the region where θ is close to zero. We can use the small angle approximation

cos θ ≈ 1− θ2

2 . We simplify to get

A ≈ µ0I

2π

∫ π

0

1√
θ2 + d2

R2

dθ =
µ0I

2π
ln (

√
(θ ∗ R

d
)2 + 1 + θ ∗ R

d
)|π0 ≈

µ0I

2π
ln
R

d

Finally, we multiply by 2πR and divide by I to get the desired mutual inductance. Note: the result
can also be achieved using Grover’s formula.

The flux through the superconducting ring must remain zero. The flux contributed by the ring itself
is simply LI. The flux contributed by each dipole is the mutual inductance over the area times the
dipole moment. The flux contributed by the image ring is the mutual inductance times the current in
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the image ring. Combining all the terms and setting it to zero gives: LI − µ0 cos θ
2R m − µ0R

2 cos θ

2(R2+4d2)
3
2
∗

µr−1
µr+1m+ µ0R ln R

d ∗
µr−1
µr+1I = 0 Solving, we get I =

µ0m cos θ

2
·

1
R −

µr−1
µr+1 ∗

R2

(R2+4d2)
3
2

L+ µ0R
µr−1
µr+1 ln R

d

(e) The force on a dipole is given by F = ∇(p · B). We can break this force up into components. The
x-component is given by Fx = px

∂Bx
∂x + py

∂Bx
∂y , where the dipole is in the x-y plane. Note that the

ring contributes no gradient of B field at the dipole, so we only need to consider the field from the
image ring and image dipole. First we find the force on the dipole due to the image ring. The field

from the image ring is given by B = µ0I1R
2

2(R2+(2d)2)
3
2

, so the gradient in the x direction is 3µ0I1R
2d

(R2+(2d)2)
5
2

.

The x-component of the field from the image ring doesn’t change significantly in the y-direction, by
symmetry, so we get ∂Bx

∂y = 0.

Now we consider the y-component Fy = px
∂By
∂x + py

∂By
∂y . The y-component of the field from the image

ring along its axis is 0, so
∂By
∂x = 0. To find

∂By
∂y , we use the fact that∇·B = 0, so we get ∂Bx

∂x +2
∂By
∂y = 0,

where here we are only considering the field from the image ring. Thus,
∂By
∂y = −∂Bx2∂x = − 3µ0I1R

2d

2(R2+(2d)2)
5
2

.

It remains to find the force between the image dipole and the real dipole. The dipole-dipole interaction
is given by equation (9). To find the x-component of the force Fx, we can calculate the derivative of
the potential energy in the x direction. Moving the dipole in the x direction only changes r, so we have
Fx = dU

dr = − 3µ0

4πr4 (mm1 cos (2θ)− 3mm1 cos2 θ) = 3µ0

4π(2d)4mm1(cos2 θ + 1) = 3µ0

64πd4mm1(cos2 θ + 1).

To find the y-component of the force Fy, we can calculate the derivative of the potential energy in the
y direction. Moving the dipole in the y direction does not change r to first order, but does change r̂.
Thus, Fy = −dUdy = − 3µ0

4πr4 (2mm1 cos θ sin θ) = − 3µ0

32πd4mm1 cos θ sin θ.

Finally, we add up all the forces to get

F = µ0
µr − 1

µr + 1
m((− 3IR2d cos θ

(R2 + 4d2)
5
2

+
3

64πd4
m(cos2 θ + 1))x̂ + (

3IR2d sin θ

2(R2 + 4d2)
5
2

− 3

32πd4
m cos θ sin θ)ŷ)

, where I is given in part (d).


